A carbon monoxide-releasing molecule (CORM-3) attenuates lipopolysaccharide- and interferon- -induced inflammation in microglia
نویسندگان
چکیده
The development of carbon monoxide-releasing molecules (CO-RMs) in recent years helped to shed more light on the diverse range of anti-inflammatory and cytoprotective activities of CO gas. In this study, we examined the effect of a ruthenium-based water-soluble CO carrier (CORM-3) on lipopolysaccharide (LPS)and interferon(INF)-induced inflammatory responses in BV-2 microglial cells and explored the possible mechanisms of action. BV-2 microglial cells were stimulated with either LPS or INFin the presence of CORM-3 and the inflammatory response evaluated by assessing the effect on nitric oxide production (nitrite levels) and tumor necrosis factor(TNF) release. Similar experiments were also performed in the presence of inhibitors of guanylate cyclase (ODQ), NO synthase (L-NAME), heme oxygenase activity (tin protoporphyrin IX) or various mitogen-activated protein kinase (MAPK) inhibitors. CORM-3 significantly attenuated the inflammatory response to LPS and INFas evidenced by a significant reduction (p < 0.001) in nitrite levels and TNFproduction (P < 0.05). Such effect was maintained in the presence of ODQ, L-NAME or tin protoporphyrin without showing any cytotoxicity. The use of an inactive form of CORM-3 that does not contain carbonyl groups (Ru(DMSO) Cl ) failed to inhibit the increase in inflammatory markers suggesting that liberated CO mediates the observed effects. In addition, inhibition of phosphatidylinositol-3-phosphate kinase (PI3K) and extracellular signal-regulated kinase (ERK) pathways seemed to amplify the anti-inflammatory effect of CORM-3, particularly in cells stimulated with INF. These results suggest that the anti-inflammatory action of CORM-3 could be exploited to mitigate microglia activation in neuro-inflammatory diseases.
منابع مشابه
A carbon monoxide-releasing molecule (CORM-3) attenuates lipopolysaccharide- and interferon-gamma-induced inflammation in microglia.
The development of carbon monoxide-releasing molecules (CO-RMs) in recent years helped to shed more light on the diverse range of anti-inflammatory and cytoprotective activities of CO gas. In this study, we examined the effect of a ruthenium-based water-soluble CO carrier (CORM-3) on lipopolysaccharide (LPS)- and interferon-gamma (INF-gamma)-induced inflammatory responses in BV-2 microglial cel...
متن کاملModulation of thrombin-induced neuroinflammation in BV-2 microglia by carbon monoxide-releasing molecule 3.
Carbon monoxide-releasing molecules are emerging as a new class of pharmacological agents that regulate important cellular function by liberating CO in biological systems. Here, we examined the role of carbon monoxide-releasing molecule 3 (CORM-3) in modulating neuroinflammatory responses in BV-2 microglial cells, considering its practical application as a novel therapeutic alternative in the t...
متن کاملHeme-oxygenase-1 induction and carbon monoxide-releasing molecule inhibit lipopolysaccharide (LPS)-induced high-mobility group box 1 release in vitro and improve survival of mice in LPS- and cecal ligation and puncture-induced sepsis model in vivo.
We examined our hypothesis that heme-oxygenase-1 (HO-1)-derived carbon monoxide (CO) inhibits the release of high-mobility group box 1 (HMGB1) in RAW264.7 cells activated with lipopolysaccharide (LPS) in vitro and in LPS- or cecal ligation and puncture (CLP)-induced septic mice in vivo, so that HO-1 induction or CO improves survival of sepsis in rodents. We found that pretreatment with HO-1 ind...
متن کاملThe Carbon Monoxide Releasing Molecule CORM-2 Attenuates Pseudomonas aeruginosa Biofilm Formation
Chronic infections resulting from biofilm formation are difficult to eradicate with current antimicrobial agents and consequently new therapies are needed. This work demonstrates that the carbon monoxide-releasing molecule CORM-2, previously shown to kill planktonic bacteria, also attenuates surface-associated growth of the gram-negative pathogen Pseudomonas aeruginosa by both preventing biofil...
متن کاملCarbon monoxide liberated from carbon monoxide-releasing molecule CORM-2 attenuates inflammation in the liver of septic mice.
Recent studies suggest that exogenously administered CO is beneficial for the resolution of acute inflammation. In this study, we assessed the role of CO liberated from a systemically administered tricarbonyldichlororuthenium-(II)-dimer (CORM-2) on modulation of liver inflammation during sepsis. Polymicrobial sepsis in mice was induced by cecal ligation and perforation (CLP). CORM-2 (8 mg/kg iv...
متن کامل